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Abstract—The exact solutions of non-linear evolution equa-
tion, Benjamin equation, Dullin-Gottwald-Holm (DGH) equation
and generalized Dullin-Gottwald-Holm equation are established
using the conserved vectors. The multiplier approach is applied
to construct the conserved vectors for equations under consider-
ation. For non-linear evolution equation three conserved vectors
and for Benjamin equation four conserved vectors are obtained.
The conserved vectors for DGH and generalized DGH equations
were reported in [1]. The higher order multiplier is considered for
DGH equation and a new conserved vector is found. The double
reduction theory is utilized to obtain various exact solutions
for Benjamin equation, DGH equation and generalized DGH
equation.

I. INTRODUCTION

The association of symmetries (Noether, Lie-Bäcklund or
non-local) with the conserved vectors plays an imperative
role in the development of a new method for construction
of exact solutions for partial differential equations (PDEs).
The interested reader is referred to some important works
in this direction. The classical Noether’s theorem [2] pro-
vides a relationship between conservation laws and variational
symmetries. Kara et al [3] derived the relationship between
Lie-Bäcklund symmetries and conserved vectors. This idea of
association was extended to non-local symmetries by Sjöberg
[4], [5]. In [6], [7], Sjöberg developed the double reduction
theory for PDEs with two independent variables and this theory
based on symmetry conservation laws relationship. A kth order
PDE with two independent variables can be reduced to an
ordinary differential equation (ODE) of order k − 1 provided
that at least one symmetry is associated with the conserved
vector. Recently, Bokhari et al [9] generalized the double
redaction theory for PDEs with n independent variables.

This article deals with the exact solutions of (1 + 1)-
dimensional non-linear evolution equation, Benjamin equation,
DGH equation and generalized DGH equation. The non-linear
evolution equation is a general form of some important
equations like duffing equation, Landau-Ginburg-Higgs
equation, sine-Gordon equation, φ4 equation, Klein-Gordon
equation [9-16] etc. The multiplier approach also known
as variational derivative approach is exploited to construct
conservation laws for equations under consideration. Stuedel
[17] introduced the multiplier approach and the conserved
vectors were written in characteristic form as DiT

i = ΛαEα.
The determining equations for the multipliers (characteristics)
were obtained by taking the variational derivative of
DiT

i = QαEα for the arbitrary functions not only for

solutions of system of partial differential equations [18].
There are some other methods as well to obtain conservation
laws. The comparison of different approaches to compute
conservation laws for some PDEs was given in [19] (see
also references therein). The symmetry conservation laws
relationship is used to determine symmetries associated with
the conserved vectors. Then the double reduction theory is
applied to find exact solutions of under study equations. Some
explicit solutions of DGH and generalized DGH equations
are computed by utilizing the sine-cosine method [27,28].

The arrangement scheme of this article is as follows. In
Section 2, we define some basic definitions, the characteristic
approach and double reduction theory. Conservation laws
and exact solutions of non-linear evolution equation are
discussed in section 3. Section 4 deals with the conservation
laws and solutions of Benjamin equation. We construct
conservation laws and exact solutions of DGH equation and
generalized DGH equation in Sections 5 and 6 respectively.
The concluding remarks are summarized at last.

II. PRELIMINARIES

The following definitions are well known [1], [3], [6], [7].

Suppose a kth order system of partial differential equations
(PDEs)

Gα(x, u, u(1), u(2), ..., u(k)) = 0, α = 1, 2, ..., m, (1)

where x = (x1, x2, ...., xn) are the independent variables
with coordinates xi and u = (u1, u2, ...., um) the dependent
variables with coordinates uα. In Eq. (1) ui symbolize the
collection of ith order partial derivatives i.e.

uα
i = Di(uα), uα

ij = DjDiu
α, ...,

where
Di =

∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ . . . , (2)

is known as the operator of total differentiation with respect
to xi.
The summation convention is adapted throughout for repeated
indices.

The Lie-Bäcklund or generalized operator is defined
as

X = ξi ∂

∂xi
+ ηα ∂

∂uα
+

∑

s≥1

ζα
i1...is

∂

∂uα
i1...is

, (3)
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where ξi, ηα ∈ A (space of differential functions). In Eq. (3)
ζα
i1...is

are the additional coefficients and can be found from

ζα
i = Di(Wα) + ξjuα

ij ,

ζα
i1 ... is

= Di1 ... Dis(W
α) + ξjuα

ji1 ... is
, s > 1. (4)

A conserved vector of (1) is an n-tuple T =
(T 1, T 2, ..., Tn), T iεA, i = 1, 2, ..., n, if

DiT
i = 0, (5)

holds for all solutions of (1).

The characteristic or multiplier Λα for conservation laws of
system (1) satisfies the property [16], [17]

Λα(Gα) = DiT
i. (6)

The determining equations for multipliers can be constructed
by taking variational derivative on both sides of Eq. (6) (see
[17])

Eu[Λα(Gα)] = 0, (7)

where Eu is the Euler operator, for each α, given by

Eu =
∂

∂uα
+

∑

s≥1

(−1)sDi1 ...Dis

∂

∂uα
i1...is

, α = 1, 2, ..., m.

(8)

If X and T are the Lie-Bäcklund symmetry generator and
conserved vector respectively of system (1) and if

X(T i) + Dj(ξj)T i − T jDj(ξi) = 0, i = 1, 2, ..., n, (9)

then X is said to be associated with T .

In case if X is not associated with T , then the following
theorem helps to find T ∗, such that X will be associated with
T ∗.

Theorem [20], [21]: Let X is the Lie symmetry generator
and T is the conserved vector of (1), then

T ∗i = X(T i)+T iDj(ξj)−T jDj(ξi), i = 1, 2, ..., n, (10)

forms a new conserved vector of (1) which satisfies DiT
∗
i = 0.

One can obtain a reduced conserved form of the kth

order PDE (1) with two independent and one dependent
variable by utilizing the associated symmetry along with the
conserved vector of (1). In terms of similarity variables r, s
with the symmetry X = ∂/∂s, the conservation laws can be
expressed as

DrT
r + DsT

s = 0, (11)

where T r and T s in terms of old variables (t, x) are

T s =
T tDt(s) + T xDx(s)

Dt(r)Dx(s)−Dx(r)Dt(s)
, (12)

T r =
T tDt(r) + T xDx(r)

Dt(r)Dx(s)−Dx(r)Dt(s)
. (13)

Since the conserved components T s and T r are func-
tions of (s, r, w, wr, wrr, ..., wr(k−1)) for solutions under

the action of X and T t and T x are functions of
(t, x, u, u(1), u(2), ...., u(k−1)), therefore Eq. (11) implies that

∂T s

∂s
+ DrT

r = 0,

which results in

T r =
∫

∂T s

∂s
dr + g(s).

The association of X with T gives rise to XT s = 0 and
XT r = 0, which further yields

∂

∂s
T r = 0 and

∂

∂s
T s = 0.

The conservation law in similarity variables reduces to

DrT
r = 0. (14)

Double reduction theorem [6]: A kth order PDE with
two independent variables and one dependent variable which
admits a symmetry generator X and is associated with the
conserved vector T is reduced to a (k − 1)th order ODE i.e.
T r = k, where T r can be determined from the formula given
in (13).

III. CONSERVATION LAWS AND EXACT SOLUTION OF
NON-LINEAR EVOLUTION EQUATION

In this section, we will derive the conservation laws of
a non-linear evolution equation by utilizing the multipliers
approach, then using these conserved vectors we will work out
for the exact solution of non-linear evolution equation using the
double reduction theorem. The nonlinear evolution equation is

utt + auxx + bu + cu3 = 0, (15)

where u = u(t, x) and a, b, c are constants. Consider the
multiplier of the form Λ = Λ(t, x, u, ut, ux). The determining
equations for multiplier of (15) are obtained by solving

Eu[Λ(utt + auxx + bu + cu3)] = 0, (16)

where Eu is the Euler operator described in (8).
Expansion of Eq. (16) gives rise to

Λu(utt + auxx + bu + cu3)−Dt[Λut
(utt + auxx + bu + cu3)

−Dx[Λux(utt + auxx + bu + cu3)] + Λ(b + 3cu2)
+ D2

t [Λ] + D2
x[aΛ] = 0. (17)

Simple but lengthy manipulations lead to the following system

Λxx = 0, utΛxut
− Λx = 0, Λutut

= 0, Λu = 0,

utΛt + auxΛx = 0, uxΛux + utΛut − Λ = 0. (18)

The solution of system (18) capitulates the following multiplier

Λ(t, x, u, ut, ux) = (−atd3 + d2)ux + (d3x + d1)ut,

where d1, d2 and d3 are arbitrary constants. The choice of
constants one by one equal to one and rest to zero yields

Λ1 = ut, Λ2 = ux, Λ3 = −atux + xut. (19)
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The conserved vectors corresponding to the multipliers (19)
are

T t
1 =

1
2
u2

t −
1
2
au2

x +
1
4
cu4 +

1
2
bu2, T x

1 = auxut,

T t
2 = utux, T x

2 = −1
2
u2

t +
1
4
cu4 +

1
2
bu2 +

1
2
au2

x,
(20)

T t
3 = −1

2
axu2

x − atutux +
1
2
xu2

t +
1
4
cxu4 +

1
2
bxu2,

T x
3 = −1

4
actu4 − 1

2
abtu2 +

1
2
atu2

t + axuxut − 1
2
a2tu2

x.

Now we apply the symmetry conservation laws relationship to
find out which symmetry is associated with conserved vector.
Then with the help of double reduction theorem we will
determine the exact solution of (15). Eq. (15) possesses the
Lie point symmetry generators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = −x

∂

∂t
+ at

∂

∂x
. (21)

Exact solution of Eq. (15) using T1: The Lie symmetries
X1 and X2 are associated with the conserved vector T1. The
reduced conserved form of Eq. (15) can be obtained by using
the combination of symmetries X = X1+αX2. The canonical
form X = ∂/∂q is derived by solving the characteristic
equation

dt

1
=

dx

α
=

du

0
=

dr

0
=

ds

1
.

Thus
s = t, r = x− αt, u = u(r), (22)

where α is a parameter. Making use of (13), we obtain

T r
1 = αT t

1 − T x
1 . (23)

Under the change of variables (22) and substituting T1 =
(T t

1 , T x
1 ) from (20), Eq. (23) transforms to

T r
1 =

α3 + a

2
u2

r +
1
4
αcu4 +

1
2
bαu2. (24)

Since Eq. (24) satisfies DrT
r
1 = 0 which implies that T r

1 = c1.
Replacement of T r

1 = c1 in Eq. (24) to obtain

α3 + aα

2
u2

r +
1
4
αcu4 +

1
2
bαu2 = c1. (25)

The solution of Eq. (25) gives rise to

±
∫

(c1−1
4
cu4−1

2
u2)−

1
2 du =

√
2

α3 + aα
(x−αt)+c2, (26)

which constitutes the solution of Eq. (15). Using Maple, we
obtain an alternative solution of Eq. (15)

1√
c1(αb +

√
α(αb2 + 4c1c))

[2c1JacobiSN(

√
α(α2 + a)(αb +

√
α(αb2 + 4c1c))√

2α(a + α2)
r + c2,

√
−

(
4 c1c + 2 b2α + 2 b

√
α (b2α + 4 c1c)

)
c1c

2 c1c + b2α + b
√

α (b2α + 4 c1c)
)]

r = x− αt. (27)

Exact solution of Eq. (15) using T2: Using relation
(9) one can easily verify that Lie symmetries X1 and X2 are
associated with the conserved vector T2. In terms of canonical
coordinates, the reduced form of conserved vector T2 is

T r
2 = αT t

2 − T x
2 . (28)

Utilizing T2 = (T t
2 , T x

2 ) from (20) and setting T r
2 = c1 in

above equation, we arrive at

−α2 − a

2
u2

r −
1
2
bu2 − 1

4
cu4 = c1. (29)

From Eq. (29), we find the same solution as given in (26).

Remarks: X1 is not associated with the conserved vector
T3 = (T t

3 , T x
3 ). Using relation (10), we find that

T ∗t3 = −autux, T ∗x3 = −1
4
acu4 − 1

2
abu2 +

1
2
au2

t −
1
2
a2u2

x,

(30)
which is a constant multiple of T2. Hence in this case we get
the same solution of Eq. (15) as derived in Eq. (??). Similarly
X2 is not associated with T3 = (T t

3 , T x
3 ) and applying the

relation (10), we conclude that

T ∗∗t3 =
1
4
cu4 +

1
2
bu2 +

1
2
u2

t −
1
2
au2

x, T ∗∗x3 = autux. (31)

The resulting vector T ∗∗3 obtained in Eq. (31) is just a constant
multiple of T1, so we obtain the same solution of Eq. (15) as
in (26).

The vector X3 is associated with T3, but in terms of
canonical

IV. BENJAMIN EQUATION

Consider the following nonlinear Benjamin equation

utt + 2au2
x + 2auuxx + buxxxx = 0, (32)

where u = u(t, x) and a, b are constants. The Benjamin
equation describes the dynamics of long internal gravity waves
in fluid flow where the surface tension effect cannot be
disregarded [10]. The multipliers Λ = Λ(t, x, u) of Eq. (32)
are obtained from the determining equation [18]

Eu[Λ(utt + 2au2
x + 2auuxx + buxxxx)] = 0, (33)

where Eu is defined in (8). Expansion of Eq. (33) gives rise
to

Λu(utt + 2au2
x + 2auuxx + buxxxx) + 2auΛuxx

−Dx[Λ(4aux)] + D2
t [Λ] + D2

x[Λ(2au)] + D4
x[bΛ] = 0. (34)

Equating the coefficients of (34) with respect to different
combinations of u yield the following over determined system

Λtt = 0, Λxx = 0, Λu = 0. (35)

The solution of system (35) established four multipliers

Λ1 = 1, Λ2 = t, Λ3 = x, Λ4 = tx. (36)
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Thus we obtain four conservation laws corresponding to mul-
tipliers (36)

T t
1 = ut, T x

1 = 2auux + buxxx,

T t
2 = −u + tut, T x

2 = 2atuux + btuxxx,

T t
3 = xut, T x

3 = 2axuux − au2 − buxx + bxuxxx,

T t
4 = −xu + txut, T x

4 = 2atxuux − atu2 − btuxx + btxuxxx.
(37)

Eq. (32) possesses the following three symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂t
+

1
2
x

∂

∂x
− u

∂

∂u
. (38)

Exact solution of Eq. (32) using T1: We can obtain a
reduced conserved form of the PDE by using the association
of symmetries with the conserved vectors. From relation (9) it
can be easily shown that X1 and X2 both are associated with
T1. The generator X = ∂

∂t + α ∂
∂x yield X = ∂/∂q subject

to the similarity variables in (22). The r-component of T1 is
then obtained by utilizing (13)

T r = α2ur + 2auur + burrr. (39)

Setting T r = c1 in Eq. (39) gives

α2ur + 2auur + burrr = c1. (40)

Integration of Eq. (40) with respect to r yields

α2u + au2 + burr = c1r + c2, (41)

where c1 and c2 are arbitrary constants. The above equation
does not admit any symmetry generator hence it can not be
reduced further by using the double reduction theorem [6].
However for particular solution and for sake of simplicity we
set c1 = 0 in Eq. (41) to obtain

α2u + au2 + burr = c2. (42)

We introduce urr as dur

du ur, then the above equation results in

urdur =
1
b
(c2 − α2u− au2)du. (43)

Integration of Eq. (43) leads to

ur = ±
√

2
b
(c2u− 1

2
α2u2 − 1

3
au3 + c3), (44)

which finally yields

±
∫

2
b
(c2u− 1

2
α2u2 − 1

3
au3 + c3)−

1
2 du = r+c4, r = αt−x.

(45)
The above solution satisfies Eq. (32).

Reduction/solution of Eq. (4.1) using T4 : The symmetry
X3 = t ∂

∂t + 1
2x ∂

∂x − u ∂
∂u is associated with the conserved

vector T4 (given in equation (37)). Using Lie symmetry X3,
we compute the similarity transformation

r =
x√
t
, s = ln(t), A(r) = tu (46)

The r-component of the conserved vector T4 is obtained by
utilizing (13) and (46)

T r
4 =

x

2
T t

4 − tT x
4 , (47)

which finally yields

−r2A− 1
4
r3Ar−2arAAr +aA2+bArr−brArrr = k1, (48)

where we have used T r
4 = k1. Eq. (48) admits the following

polynomial solution

A(r) = ±
√

ak1 + b

a
− r2

2a
, (49)

which in terms of original variables capitulates

u(t, x) = ±
√

ak1 + b

at
− x2

2at2
. (50)

Remarks: X2 is associated with T2 whereas X1 is not. Using
relation (10), we obtain T ∗2 which is associated with X1 as
well as X2, but T ∗2 = T1, hence we get the same result as in
(45).

X1 is associated with T3 whereas X2 is not. From (10), we
compute T ∗3 which is associated with X2 as well as X1, but
T ∗3 = T1, therefore we obtain the same result derived in (45).

The relationship (9) shows thatX1 and X2 are not associated
with T4. Employing the same procedure, we obtain T ∗4 which
is associated with X1 as well as X2, but T ∗4 = T1, thats why
we attain the same result as in (45).

V. CONSERVATION LAWS AND EXACT SOLUTIONS OF
DULLIN-GOTTWALD-HOLM EQUATION

The integrable shallow water wave equation with linear
and non-linear dispersions recognized as the Dullin-Gottwald-
Holm (DGH) equation [1,22,23]

ut +2ωux +3uux−α2(utxx +2uxuxx +uuxxx)+γuxxx = 0,
(51)

where α2 and γ/2ω represents square of length scales and
ω denotes the linear speed for undisturbed water at rest and
u(t, x) is the fluid velocity. Following two conservation laws
of (51) are reported in [1] corresponding to the multiplier Λ =
Λ(t, x, u, ut, ux):

T t
1 = u−α2uxx, T x

1 =
3
2
u2+2ωu−α2uuxx−1

2
α2u2

x+γuxx,

T t
2 =

1
2
u2 − 1

2
α2u2

x − α2uuxx,

T x
2 = ωu2 + u3 − α2u2uxx + α2utux + γ(uuxx − 1

2
u2

x).
(52)

Now, we will consider the higher order multipliers Λ =
Λ(t, x, u, ut, ux, uxx) to compute the associated conservation
laws fluxes. The determining equations for multipliers of the
form (7) yield

Eu[Λ(ut + 2ωux + 3uux

− α2(utxx + 2uxuxx + uuxxx) + γuxxx)] = 0, (53)
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where Eu is the Euler operator presented in (8). Expansion of
(53) provides

Λu[(ut + 2ωux + 3uux − α2(utxx + 2uxuxx + uuxxx)
+ γuxxx)] + Λ(3ux − α2uxxx)−Dt[λut

(ut + 2ωux + 3uux

− α2(utxx + 2uxuxx + uuxxx) + γuxxx) + Λ]
−Dx[Λux

(ut + 2ωux + 3uux − α2(utxx + 2uxuxx + uuxxx)
+ γuxxx) + Λ(2ω + 3u− 2α2uxx)]
+ D2

x[Λuxx(ut + 2ωux + 3uux − α2(utxx

+ 2uxuxx + uuxxx) + γuxxx) + Λ(−2α2ux)] (54)

−D3
x[Λ(−α2u + γ)]−D2

xDt(−α2) = 0. (55)

The solution of system (55) for multiplier Λ results in

Λ = d1u + d2 +
d3α

2
√

2√
2α4uxx − 2α2u− 2α2ω − γ

, (56)

where d1, d2 and d3 are arbitrary constants. The choice of
constants established the following three multipliers

Λ1 = u, Λ2 = 1, Λ3 =
α2
√

2√
2α4uxx − 2α2u− 2α2ω − γ

.

(57)
The first two multipliers are the same as derived in [1] and the
conserved vectors are given in Eq. (52). The new higher order
multiplier is related to constant d3. Thus the new conserved
vector corresponding to the multiplier Λ3 is

T t
3 =

√
−γ − 2α2ω −

√
2α4uxx − 2α2u− 2α2ω − γ,

T x
3 = −

√
2α4uxx − 2α2u− 2α2ω − γu− γ

α2

√
−γ − 2α2ω

+
γ

α2

√
2α4uxx − 2α2u− 2α2ω − γ. (58)

Eq. (51) admits symmetries with generators

X1 =
∂

∂t
, X2 =

∂

∂x
,

X3 = t
∂

∂t
− (tw +

3γ

2α2
t)

∂

∂x
+

(−2ω − 2u)α2 − γ

2α2

∂

∂u
.

(59)

The symmetries X1 and X2 are associated with T1, T2 and
T3 whereas X3 is not associated with any of these conserved
vectors.

Exact solution of Eq. (51) using T1: Since X1 and
X2 are associated with T1 so the combination of these
symmetries X = X1 + βX2 yield the generator X = ∂/∂q
under the change of coordinates

s = x, r = βt− x, u = u(r). (60)

The r-component of T1 is achieved using (13)

T r
1 = βT t

1 − T x
1 . (61)

In terms of canonical variables, Eq. (61) becomes

(β−2w)u− 3
2
u2 +

1
2
α2u2

r +(α2u−βα2−γ)urr = k1, (62)

where we have used T r
1 = k1.

The solution of Eq. (62) is

±
∫ −α2u + βα2 + γ√

(−α2u + βα2 + γ)(βu2 − 2u2w − u3 − 2k1u + c1)
du

= r + c2, r = βt− x, (63)

which comprise the solution of (51). In order to get closed
form solution(s) we use sine-cosine method which was
presented in [27,28] and is represented below briefly:

Sine-Cosine Algorithm:

• Integrate the ODE P (u, ur, urr, ...) = 0 as many
times as possible and set the constants of integration
equal zero.

• Consider the solution of the form

u(r) = λ sin(µr)κ, (64)

or
u(r) = λ cos(µr)κ, (65)

where the parameters λ, µ and κ are need to be
determined.

• Substitute (64) or (65) in P (u, ur, urr, ...) = 0 and
balance the terms of sine functions when (64) is used
or balance the terms of cosine functions when (65) is
utilized.

• Separate the terms with respect to powers of sine
or cosine functions to obtain algebraic system of
equations in terms of λ, µ and κ and then solve this
system to obtian these parameters.

Employing the above mentioned algorithm to Eq. (62) and
setting k1 = 0 we obtain the following two solutions

u1(t, x) = −γ + 2wα2

α2
cosh2(

α2x + γt

2α3
), β = − γ

α2
,

(66)

u2(t, x) =
γ + 2wα2

α2
sinh2(

α2x + γt

2α3
), β = − γ

α2
.

(67)

Exact solution of Eq. (51) using T2: Both the symmetries
X1 and X2 are associated with T2. The r-component of T2 is

T r
2 = βT t

2 − T x
2 .

If T2 = (T t
2 , T x

2 ) from (52) is substituted in above equation,
then we obtain

(
1
2
β−w)u2−u3+

1
2
(βα2+γ)u2

r+(α2u2−βα2u−γu)urr = k2.

(68)
Writing urr = dur

du ur and then integration gives rise to the
same solution as obtained in case-1 above. The closed form
solutions of (68) are obtained using sine-cosine algorithm as
described above and then the exact solutions of (51) finally
expressed as

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS 
DOI: 10.46300/91014.2020.14.8 Volume 14, 2020

ISSN: 2074-1278 55



u1(t, x) = −γ + 2wα2

α2
cosh2(

x− βt

2α
), (69)

u2(t, x) =
γ + 2wα2

α2
sinh2(

x− βt

2α
). (70)

Exact solution of Eq. (51) using T3: It can be easily
verified that X1 and X2 are associated with T3 hence we obtain
the same coordinates as derived in (60). Applying (13), we get
the reduced conserved form

β(
√
−γ − 2α2w −

√
2α4urr − 2α2u− 2α2w − γ)

+
√

2α4urr − 2α2u− 2α2w − γu +
γ

α2

√
−γ − 2α2w

− γ

α2

√
2α4urr − 2α2u− 2α2w − γ = k3, (71)

which yields

(− γ

α2
− β + u)

√
2α4urr − 2α2u− 2α2w − γ

+ (
γ

α2
+ β)

√
−γ − 2α2w = k3. (72)

Taking square and then simplification results in

2α4urr =
(k3 − ( γ

α2 + β)
√
−γ − 2α2w)2

(− γ
α2 − β + u)2

+ 2α2u + 2α2w + γ. (73)

We use urr = dur

du ur in Eq. (73) to obtain

2α4ur
dur

du
=

(k3 − ( γ
α2 + β)

√
−γ − 2α2w)2

(− γ
α2 − β + u)2

+ 2α2u + 2α2w + γ, (74)

and therefore

± α2ur = [− (k3 − ( γ
α2 + β)

√
−γ − 2α2w)2

(− γ
α2 − β + u)

+ α2u2 + 2α2wu + γu + c5]
1
2 . (75)

Integration with respect to r furnishes

± α2

∫
(− (k3 − ( γ

α2 + β)
√
−γ − 2α2w)2

(− γ
α2 − β + u)

+ α2u2 + 2α2wu + γu + c5)−
1
2 du = r + c6, r = βt− x,

(76)

where c5 and c6 are constants of integration. The above
implicit solution satisfies the DGH equation.

VI. GENERALIZED DULLIN-GOTTWALD-HOLM
EQUATION

The generalized DGH equation is defined by [24]

ut + 2wux + 3umux − α2(utxx + 2uxuxx + uuxxx)
+ γuxxx = 0, m > 0. (77)

The DGH equation can be derived from the generalized DGH
equation by taking m = 1 and the Camassa-Holm equation
can be deduced for m = 1 and γ = 0. When γ = 0, then
Eq. (77) reduces the generalized Camassa-Holm equation
considered by Lixin Trian and Xiuying Song [25]. For α = 0,

the generalized kdv equation is deduced.

The following two conservation laws are derived in [1]:

T t
1 = u− α2uxx,

T x
1 =

3
m + 1

um+1 + 2wu− α2uuxx − 1
2
α2u2

x + γuxx,

T t
2 =

1
2
u2 − α2uuxx − 1

2
α2u2

x,

T x
2 = wu2 +

3
m + 2

um+2 − α2u2uxx + α2utux

+ γ(uuxx − 1
2
u2

x). (78)

One can easily verify that for higher order multiplier the
variational derivative approach yields the same conservation
laws for generalized DGH equation. Eq. (77) admits the
following two symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
.

Employing the same method of solution as in the previous sec-
tion, the following two solutions are obtained for generalized
DGH equation

±
∫

(m2βα2 + m2γ + mβα2 + 3mγ + 2βα2 + 2γ+

(−m2α2 − 3mα2 − 2α2)u)(−(m2 + 3m + 2)
(6um+2 − βm2u2 − 3βmu2 + 2u2wm2 + 6u2wm

+ 2uk5m
2 + 6mk5u− 2u2β

+ 4u2w + 4k5u− c7m
2 − 3c7m− 2c7)

(βα2 − α2u + γ))−
1
2 du− βt + x− c8 = 0 (79)

and

±
∫

(m2βα2 + 3βα2m + m2γ

+ 3mγ + 2βα2 + 2γ + (−m2α2 − 3mα2

− 2α2)u)(−(m2 + 3m + 2)(4u2w − u2βm2 − 2k6m
2

− 6k6m− 4k6 + 6um+2 − uc9m
2 − 3uc9m− 2uc9 + 2u2wm2

+ 6u2wm− 3u2βm− 2u2β)

(βα2 − α2u + γ))−
1
2 du− βt + x− c10 = 0, (80)

where c1, ..., c10 are arbitrary constants.
In case when m = 1, we obtain the same solution as in
(70). The solutions of generalized DGH equation for m = 2,
employing sine-cosine method are

u1(t, x) =
−α2 +

√
(1− 4w)α4 − 2α2γ

α2 cosh2[
√

α2−
√

(1−4w)α4−2α2γ

8α4 (x− βt)]
, (81)

u2(t, x) =
α2 −

√
(1− 4w)α4 − 2α2γ

α2 sinh2[
√

α2−
√

(1−4w)α4−2α2γ

8α4 (x− βt)]
, (82)

u3(t, x) =
−α2 +

√
(1− 4w)α4 − 2α2γ

α2 cos2[
√
−α2+

√
(1−4w)α4−2α2γ

8α4 (x− βt)]
, (83)

u4(t, x) =
−α2 +

√
(1− 4w)α4 − 2α2γ

α2 sin2[
√
−α2+

√
(1−4w)α4−2α2γ

8α4 (x− βt)]
, (84)
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where

β =
α2 − γ − sqrt(1− 4w)α4 − 2α2γ

α2
. (85)

VII. CONCLUSION

The conservation laws of non-linear evolution equation,
Benjamin equation and DGH equation were derived using mul-
tipliers approach. The first order multipliers were considered
for non-linear evolution equation and three conserved vectors
were constructed. The symmetry conservation law relationship
was used to determine symmetries associated with conserved
vectors. One exact solution for non-linear evolution equation
was computed using the double reduction theorem. For Ben-
jamin equation we considered multiplier as a function of de-
pendent and independent variables and four conserved vectors
were obtained. However first order multipliers generated same
conserved vectors. The fourth order Benjamin equation was
reduced to a second order ODE in terms of similarity variables.
A particular solution of this second order ODE was found
which constituted the exact solution of Benjamin equation. The
double reduction theorem was invoked to compute solutions
of DGH equation and generalized DGH equation. The same
combination of symmetries ∂/∂t and ∂/∂x was used to derive
the invariant ansatz for equations under consideration which
yielded the same solution by using any associated conserved
vector T4 and the reduced conserved form of Benjamin equa-
tion was derived. The resulting equation could not be reduced
further however the polynomial solution was obtained using
Maple. Additionally, we invoked the sine-cosine method and
the explicit solutions of DGH and generalized DGH equations
were established.
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